
Lecture Notes, January 7 & 12 , 2010

The Edgeworth Box
 2 person, 2 good, pure exchange economy

Fixed positive quantities of  X and Y, and two households, 1 and 2.  

Household 1 is endowed with of good X and of good Y, utility functionX1 Y1

U1(X1, Y1) .  Household 2 is endowed with  of good X and of good Y, utilityX2 Y2

function U2(X2, Y2)

 X1 + X2 = ,X1  X2  X
 Y1 + Y2 = .  Y1  Y2  Y
Each point in the Edgeworth box represents an attainable choice of X1 and X2 , Y1

and Y2 .
1's origin is at the southwest corner; 1's consumption increases as the allocation
point moves in a northeast direction;  2's increases as the allocation point moves in
a southwest direction.   Superimpose indifference curves on the Edgeworth Box.  
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co-ordinatewise and any good for which there is a strict inequality has a price of 0.

Pareto efficiency: 
An allocation is Pareto efficient if all of the opportunities for mutually

desirable reallocation have been fully used.  The allocation is Pareto efficient if
there is no available reallocation that can improve the utility level of one household
while not reducing the utility of any household. 

Tangency of 1 and 2's indifference curves :  Pareto efficient allocations.  

Pareto efficient allocation:  
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(Xo1 , Yo1), (Xo2, Yo2) maximizes 

U1(X1 , Y1) subject to 

U2(X2 , Y2)   Uo2   (typically equality will hold and Uo2=U2(Xo2, Yo2) ) and subject
to the resource constraints 

X1 + X2 = X1  X2  X

Y1 + Y2 =  .Y1  Y2  Y
Equivalently, X2 =  - X1 ,   Y2 =  - Y1 X Y

Solving for Pareto efficiency (Assuming differentiability and an interior solution):  

 Lagrangian
L   U1(X1 , Y1) + [U2( -X1 ,  -Y1) - Uo2] X Y

L

X1 
U1

X1  
U2

X2  0

L

Y1 
U1

Y1  
U2

Y2  0

U2(X2 , Y2) - Uo2 = 0
L
 

This gives us then the condition

MRS1
xy= =MRS2

xy  or equivalently

U1

X1

U1

Y1


U2

X2

U2

Y2

MRS1
xy= =MRS2

xy  
Y1

X1 U1constant 
Y2

X2 U2constant

Pareto efficient allocation in the Edgeworth box:  the slope of 2's indifference
curve at an efficient allocation will equal the slope of 1's indifference curve;  the
points of tangency of the two curves.  

 contract curve = individually rational Pareto efficient points
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Market allocation
  px ,  py 

Household 1:Choose X1, Y1, to maximize U1(X1,Y1) subject to  
pxX1 + pyY1 = px   + py =  B1 X1 Y1

 budget constraint is a straight line passing through the endowment point ( )X1, Y1

with slope  .  px

py

Lagrangian 

L = U1(X1,Y1) -  [pxX1 + pyY1 -  B1]

L
X 

U1

X1  px  0

L
Y 

U1

Y1  py  0
Therefore, at the utility optimum subject to budget constraint we have

MRS1
xy= ; Similarly for household 2, 

U1

X1

U1

Y1

 px

py

MRS2
xy=   .

U2

X2

U2

Y2

 px

py

Equilibrium prices: p*x and p*y so that 
X*1 + X*2 =   X1  X2  X
Y*1 + Y*2 =  ,Y1  Y2  Y

(market clearing) 

where  X*i and Y*i , i =1, 2, are utility maximizing mix of X and Y at prices  p*x

and p*y .  
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  Y1

X1 U1U1 
U1

X1

U1

Y1

 px

py

px

py 
U2

X2

U2

Y2

  Y2

X2 U2U2

  The price system decentralizes the efficient allocation decision. 

 Set Theory

Logical Inference
Let A and B be two logical conditions, like A="it's sunny today" and B="the light

outside is very bright" 
AB
     A implies B, if A then B

A B
      A if and only if B, A implies B and B implies A,  A and B are equivalent conditions

Definition of a Set
{ }
{x | x has property P} 
{1, 2, ..., 9, 10}  =  { x | x is an integer,  1  x  10 }.    

Elements of a set
x  A ;   y  A
x  { x }
 x  { x }
 the empty set ( null set), the set with no elements. 

Subsets
 if x  A   x  BA  B or A  B

. A  A and   A

Set Equality
 A = B if A and B have precisely the same elements
A = B if and only if  .A  B and B  A
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Set Union
A  B

  ('or' includes 'and')   A B  x; ;x  A or x  B

Set  Intersection 


  A B  x x  A and x  B
If  we say that A and B are disjoint. A B  

Theorem 6.1:  Let A, B, C be sets,
a. (idempotency)A A  A, A A  A
b. (commutativity)A B  B A, A B  B A
c. (associativity)A BC  A B C

A BC  A B C
d. (distributivity)A BC  A B  A C

A BC  A B  A C

Complementation (set subtraction)
\
A\B  x x  A, x  B

Cartesian Product
ordered pairs 
 .  A x B  x, y x  A, y  B
Note: If  x  y, then  (x, y)  (y, x) .

R = The set of real numbers 
RN = N-fold Cartesian product of R with itself.  
RN =  R x R x R x ... x R, where the product is taken N times.  
The order of elements in the ordered N-tuple (x, y, ...) is essential.  If  

.x  y, x, y,  y, x,

   RN , Real N-dimensional Euclidean space

Read Starr's General Equilibrium Theory, Chapter 7.  

R2  =  plane 
R3  =  3-dimensional space
RN = N-dimensional Euclidean space 

Definition of R:
R = the real line 
  R 
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+, - ,  

closed interval :  [a, b] {x| x R, a x b}.  

R is complete.  Nested intervals property: Let  x < y and [x , y  [x , y , 
 = 1, 2, 3, ... .  Then there is z  R so that z [x , y , for all .

 = N-fold Cartesian product of R.RN

 ,  x  RN x  x1, x2,, xN
xi  is the ith co-ordinate of x. 
x  =  point (or vector) in RN 

Algebra of elements of RN

x  y  x1  y1, x2  y2, , xN  yN

0 = (0, 0, 0, ..., 0) , the origin in N-space

= (x1-y1, x2-y2, ..., xN-yN)  x  y  x  y

.  t  R, x  RN, then tx  tx1, tx2, , txN

   .  If p  RN is a price vector and y RN is an economic action,x, y  RN, x  y 
N

i1
 xiyi

then p  y =  is the value of the action y at prices p.  
n1

N
pnyn

Norm in  RN, the measure of distance

 .x  x  x  x 
i1

N
 xi

2

Let  .  The distance between  x and y is . x, y  RN x  y
 
| x - y | =  .  ixi  yi2

 x  y  0 all x, y  RN

| x - y |  = 0 if and only if x = y.  

Limits of Sequences
 x , = 1, 2, 3, ... , 
Example:  x = 1/.    1, 1/2, 1/3, 1/4, 1/5, ... .    x 0 .

Formally, let .   Definition: We say if for any , there isxi  R, i  1, 2,  xi  x0   0
so  that for all .  q q  q, xq  x0  

Economics 113 Prof. R. Starr
Mr. Troy Kravitz, UCSD Winter 2010

January 7 & 12, 2010 6



So in the example  x = 1/, q() = 1/

 Let .  We say that  if for each co-ordinatexi  RN, i  1, 2,  xi  x0

.n  1, 2, , N, xn
i  xn

0

Theorem 7.1:  Let .  Then   if and only if for any  therexi  RN, i  1, 2,  xi  x0 
is  such that for all .q q  q, xq  x0  

xo is a cluster point of S RN if there is a sequence x RN so that x xo. 

Open Sets
Let ;  X is open if for every  there is an   so that impliesX  RN x  X   0 x  y  

.y  X

Open interval in R:  (a, b) = { x | x  R, a < x < b} 

 are open.   and RN

Closed Sets
Example:  Problem - Choose a point x in the closed interval [a, b] (where 0 < a < b) to

maximize x2. Solution:  x = b.
Problem - Choose a point x in the open interval (a, b)  to maximize x2. There is no
solution in  (a, b) since b (a, b). 

A set is closed if it contains all of its cluster points.  

Definition:  Let .  X is said to be a closed set if for every sequence x,  = 1, 2,X  RN

3, ... , satisfying,
(i) , and x  X
(ii) ,x  x0

 it follows that .  x0  X

Examples:  A closed interval in R, [a, b] is closed
A closed ball in RN of radius r, centered at cRN, {xRN|  |x-c|  r} is a closed

set.
A line in RN is a closed set
But a set may be neither open nor closed (for example the sequence {1/}, =1,

2, 3, 4, ...  is not closed in R, since 0 is a limit point of the sequence but is not an element
of the sequence; it is not open since it consists of isolated points).
  
Note: Closed and open are not antonyms among sets. are each both closed and and RN

open.  

Let X   RN. The closure of X is defined as
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    { y | there is x  X, so that  x  y }.  X
For example the closure of the sequence in R,  {1/ =1, 2, 3, 4, ... } is

 {0}{1/ =1, 2, 3, 4, ... }.

Concept of Proof by contradiction:  Suppose we want to show that AB.  Ordinarily,
we'd like to prove this directly.  But it may be easier to show that [not (AB)] is false.
How?  Show that [A & (not B)] leads to a contradiction.  A: x = 1,  B:x+3=4.  Then [A &
(not B)] leads to the conclusion that 1+34 or equivalently 11, a contradiction.  Hence
[A & (not B)] must fail so AB.  (Yes, it does feel backwards, like your pocket is
being picked, but it works).  

Theorem 7.2:  Let .  X is closed if  RN \ X  is open.X  RN

Proof:  Suppose RN \ X  is open.  We must show that X is closed.  If X=RN the result is
trivially satisfied.  For XRN, let xX, xxo.  We must show that xoX if  RN \ X  is
open.  Proof by contradiction.  Suppose not.  Then xoRN \ XBut RN \ X is open.  Thus
there is an neighborhood about xo entirely contained in RN \ X.  But then for large,
 xRN \ X, a contradiction.  Therefore xoX and X is closed.  QED

Theorem 7.3: 1. X  X
2.  if and only if X is closed.X  X

Bounded Sets
Def:  = cube of side 2k (centered at theKk  x x  RN, xi  k, i  1, 2, , N
origin).
Def:  .   X is bounded if there is so that .X  RN k  R X  Kk

Compact Sets
THE IDEA OF COMPACTNESS IS ESSENTIAL!

Def:  .   X is compact if X is closed and bounded.X  RN

Finite subcover property:  An open covering of X is a collection of open sets so that X is
contained in the union of the collection.  It is a property of compact X that for every
 open covering there is a finite subset of the open covering whose union also contains
X.  That is, every open covering of a compact set has a finite subcover.  

Boundary, Interior, etc.
, Interior of X = , there is  so that  implies X  RN y y  X   0 x  y   x  X

Boundary X  X\Interior X

Set Summation in RN

Let A  RN, B RN.  Then 
 A + B { x | x = a + b, a A, b  B }.  

The Bolzano-Weierstrass Theorem, Completeness of .RN
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Theorem 7.4 (Nested Intervals Theorem):  By an interval in , we mean a set I of theRN

form , .I  x1, x2, , xN a1  x1  b1 a2  x2  b2, , aN  xN  bN, ai, bi  R
Consider a sequence of nonempty closed intervals such thatIk

.I1  I2  I3   Ik 

Then there is a point in  contained in all the intervals. That is,  andRN xo 
i1


Ii

therefore  ; the intersection is nonempty. 
i1


Ii  

Proof:  Follows from the completeness of the reals, the nested intervals property on R.

Corollary  (Bolzano-Weierstrass theorem for sequences):  Let , i = 1, 2, 3, ...  be axi

bounded sequence in . Then  contains a convergent subsequence.RN xi

Proof  2 cases:   assumes a finite number of values,  assumes an infinite number ofxi xi

values.

It follows from the Bolzano-Weierstrass Theorem for sequences and the definition of
compactness that an infinite sequence on a compact set has a convergent subsequence
whose limit is in the compact set.  
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