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Lecture Notes, January 7 & 12, 2010

The Edgeworth Box
2 person, 2 good, pure exchange economy

Fixed positive quantities of X and Y, and two households, 1 and 2.

Household 1 is endowed with X* of good X and Y* of good Y, utility function
U'(X', Y1) . Household 2 is endowed with X? of good X and Y2 of good Y, utility
function U*(X?, Y?)

X+ X=X+ X2 =X,

Y +YZ=YlaY2=Y |

Each point in the Edgeworth box represents an attainable choice of X' and X?, Y*
and Y?.

1's origin is at the southwest corner; 1's consumption increases as the allocation
point moves in a northeast direction; 2's increases as the allocation point moves in
a southwest direction. Superimpose indifference curves on the Edgeworth Box.

Competitive Equilibrium
(p° » p°) so that (X*, Y°1) maX|m|zes U'(X', YY) subject to

(0%, °,)- X", Y1) <(p°,, p°)-(X ", Y) and
(X02 Y*®%) maximizes U2(X2 Y2) subject to

(P° . P°)- (X% YO (', , p°) (X, Y) and

(xol Yol) + (xoz YoZ) - (x Y ) (X Y )
or (X% YY) + (X2 Y < (X', ¥+ (X5, ¥%) , where the inequality holds
co-ordinatewise and any good for which there is a strict inequality has a price of 0.

Pareto efficiency:

An allocation is Pareto efficient if all of the opportunities for mutually
desirable reallocation have been fully used. The allocation is Pareto efficient if
there is no available reallocation that can improve the utility level of one household
while not reducing the utility of any household.

Tangency of 1 and 2's indifference curves : Pareto efficient allocations.
Pareto efficient allocation:
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(X°, YO, (X%, Y°%) maximizes

U'(X*, Y') subject to

UA(X?, Y5 > U (typically equality will hold and U°=U*(X*?, Y°%) ) and subject
to the resource constraints

X!+ X2 = X4 X2 =X

Y +Y2=Ylav2=Y )
Equivalently, X2 =X - X1 Y?=Y -Y?

Solving for Pareto efficiency (Assuming differentiability and an interior solution):

Lagrangian B B
L= U'(XY, YY) + A[UR(X-XEY YY) - U]

oL oul _kau2 ~0
oxt  oxt OX2

oL oul _KGUZ _0
oyl oyl oY?

& =X, ¥) - U2 =0

This gives us then the condition

oul  au2
,ooxt X2 _
MRS, = ol — a2 =MRS?,, or equivalently
oyl oy?2
2
MRSle 2>Y<1 |U1—constant 2>Y<2 |U2_constant —MRSZ

Pareto efficient allocation in the Edgeworth box: the slope of 2's indifference
curve at an efficient allocation will equal the slope of 1's indifference curve; the
points of tangency of the two curves.

contract curve = individually rational Pareto efficient points
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Market allocation
p*, p’

Household 1:Choose X*, Y*, to maximize U'(X*,Y*) subject to

pxxl + ple - pX Xl + ple — Bl o

budget constraint is a straight line passing through the endowment point (X*,Y? )
X

with slope —% :

Lagrangian

L = UYXLYY - A [pXt + pYY! - BY

oL _ Ul 5 ox _
oX — oxi kp =0

oL _aut 4y
oY — py! }\’p =0

Therefore, at the utility optimum subject to budget constraint we have

out
MRSt = X = B Similarly for household 2
W= Syi = pr+ Similarly for household 2,
ov!
ou?
, o2 _pt
MRS= 202 =9 -
oY?

Equilibrium prices: p**and p*” so that
X* 4+ X*2= X1+ X2=X
Y* 4+ Y*2= YipY2=Y |

(market clearing)

where X*'and Y*', i =1, 2, are utility maximizing mix of X and Y at prices p**
and p*'.

January 7 & 12, 2010 3



Economics 113 Prof. R. Starr

Mr. Troy Kravitz, UCSD Winter 2010
oul
vty _p
oxt V=T Tyt T Y
oyl
ou?
Lo RN b
P T ox2 YU
oY?

The price system decentralizes the efficient allocation decision.

Set Theory

Logical Inference
Let A and B be two logical conditions, like A="it's sunny today" and B="the light
outside is very bright"
A= B
A implies B, if A then B

A < B
A if and only if B, A implies B and B implies A, A and B are equivalent conditions

Definition of a Set

{}
{x | x has property P}
{1,2,..,9, 10} = {x|xisaninteger, 1< x <10 }.

Elements of a set
xeA; yegA
x#{x}
xe{x}

¢ = the empty set (= null set), the set with no elements.

Subsets
AcBorAcB ifxeA =>xeB
AcAanddcA .

Set Equality
A =B if A and B have precisely the same elements
A=Bifandonlyif AcBandBcA .
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Set Union
AuB
AUB={xl;xe Aorxe B}

Set Intersection

M

ANB={xIxeAandx e B}

If AnB=¢ we say that A and B are disjoint.

Theorem 6.1: Let A, B, C be sets,

a.
b.
C.

d.

ANnA=A AUA=A
ANnB=BnA AUB=BUA
ANn(BNC)=(AnB)NC
AuBuUulC)=(AuB)uC
ANn(BuUC)=(AnB)UANC)
AuBNC)=(AuB)Nn(AUC)

Complementation (set subtraction)

\

AB={x|xeA x¢B}

Cartesian Product

ordered pairs
AxB={(x, ¥)IxeA yeB}.

Note: If x =y, then (X, y) = (Y, X) .

R = The set of real numbers

R" = N-fold Cartesian product of R with itself.

(‘'or" includes 'and’)

(idempotency)
(commutativity)
(associativity)

(distributivity)

RY= RXxRXR x... xR, where the product is taken N times.
The order of elements in the ordered N-tuple (x, vy, ...) is essential. If

XY, (XY,..)#Y,X...) .

R, Real N-dimensional Euclidean space

Read Starr's General Equilibrium Theory, Chapter 7.

RZ
RS

plane
3-dimensional space

R™ = N-dimensional Euclidean space

Definition of R:

R = the real line
to ¢ R
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+, -, %X, +
closed interval : [a,b]={x|x € R,a<x<b}.

R is complete. Nested intervals property: Let x' <y" and [x"*',y"*' < [X',Vy'],
v=12,3,... Thenthereisze Rsothatz € [x",y"], forall v.

RN = N-fold Cartesian product of R.
xe RN | x=(X1,X2,...,XN)
X; is the ith co-ordinate of x.
X = point (or vector) in RN

Algebra of elements of RN
X+Y=(X14+Y1, X2+VY2, ..., XN +YN)

0=(0,0,0,...,0), the origin in N-space
X=Y =X+ (=Y) = (%Y1 Xp7Yor oo XyYn)
t e R, x e RN, then tx = (txq, tx, ..., tXn) .

N
X, ye RN, x-y ;21 xiyi . Ifp e RVis a price vector and y eR" is an economic action,
=

thenp-y= gl PnYn is the value of the action y at prices p.
n=

Norm in RN, the measure of distance

N2
x| = x| = /XX = DR
i=

Letx, y € RN . The distance between x andyis |x -] .
|X-y = JZikxi—y)? .

Ix-y[|>=0allx, y e RN
|x-y| =0ifandonly if x =y.

Limits of Sequences

x',v=123, ..,
Example: x' =1/v. 1,1/2,1/3,1/4,1/5,.... X' —>0.
Formally, letx' e R, i=1, 2, ... . Definition: We say x' — x° if for any £ > 0, there is

q(e) so that for all g’ > q(e), Ix¥ —x%l <¢ .
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So in the example x" =1/v, q(e) = 1/e

Letx' e RN, i=1, 2, ... . Wesay thatx' — x° if for each co-ordinate
n=1,2, ..., N, xi >x9.
Theorem 7.1: Letx' e RN, i=1, 2, .... Then x' - x° ifand only if for any ¢ there

is q(e) such that for all g’ > q(e), [x¥ —x%| <e .

x° is a cluster point of S — R" if there is a sequence x'e R" so that X" —X°.

Open Sets
Let X< RN ; Xis open if for every x e X thereisan >0 so that||x —y|| < & implies
yeX.

Openinterval inR: (a,b) ={x|x e R,a<x<Db}
¢ and RN are open.

Closed Sets
Example: Problem - Choose a point x in the closed interval [a, b] (where 0 <a <b) to
maximize x2 Solution: x = b.
Problem - Choose a point x in the open interval (a, b) to maximize x% There is no
solution in (a, b) since b ¢ (a, b).

A set is closed if it contains all of its cluster points.

Definition: Let X < RN . X is said to be a closed set if for every sequence x*, v =1, 2,
3, ..., satisfying,

() x'eX,and

(i) x¥—-x° ,
it follows that x° € X .

Examples: A closed interval in R, [a, b] is closed

A closed ball in RN of radius r, centered at ceR", {xeR"| |x-c| <r}is a closed
set.

A line in R is a closed set

But a set may be neither open nor closed (for example the sequence {1/v}, v=1,
2,3,4, ... isnotclosed in R, since 0 is a limit point of the sequence but is not an element
of the sequence; it is not open since it consists of isolated points).

Note: Closed and open are not antonyms among sets. ¢ and RN are each both closed and
open.

Let X = R™. The closure of X is defined as
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X ={y|thereisx' e X,v=1,2,3,...,s0that X' >y}
For example the closure of the sequence in R, {1/v|v=1,2,3,4,..}is
{0y {1l/v|v=123,4, ..}

Concept of Proof by contradiction: Suppose we want to show that A = B. Ordinarily,
we'd like to prove this directly. But it may be easier to show that [not (A = B)] is false.
How? Show that [A & (not B)] leads to a contradiction. A: x =1, B:x+3=4. Then [A &
(not B)] leads to the conclusion that 1+3=4 or equivalently 1+#1, a contradiction. Hence
[A & (not B)] must fail so A= B. (Yes, it does feel backwards, like your pocket is
being picked, but it works).

Theorem 7.2: Let Xc RN . Xisclosed if RM\ X is open.

Proof: Suppose RN\ X is open. We must show that X is closed. If X=R" the result is
trivially satisfied. For X=R", let X’ € X, X'—x°. We must show that x°e X if RN\ X is
open. Proof by contradiction. Suppose not. Then x°e R\ X. But R¥\ X is open. Thus
there is an ¢ neighborhood about x° entirely contained in R¥\ X. But then for v large,

X" e RM\ X, a contradiction. Therefore x°c X and X is closed. QED

Theorem 7.3: 1. X c_i
2. X=X ifand only if X is closed.

Bounded Sets
Def: K(k)= {xlx e RN, Ixjl <k, i=1, 2, ..., N} =cube of side 2k (centered at the
origin).
Def: X< RN . Xiis bounded if there is k € R so that X = K(k) .

Compact Sets
THE IDEA OF COMPACTNESS IS ESSENTIAL!
Def: X< RN . Xis compact if X is closed and bounded.
Finite subcover property: An open covering of X is a collection of open sets so that X is
contained in the union of the collection. It is a property of compact X that for every
open covering there is a finite subset of the open covering whose union also contains
X. That is, every open covering of a compact set has a finite subcover.

Boundary, Interior, etc.
X< RN | Interior of X = {yly e X , there is ¢ > 0 so that [x—y|| <& implies x € X}
Boundary X = X\Interior X

Set Summation in RM
Let AcRY, Bc R". Then
A+B={x|x=a+b,aeAbeB}

The Bolzano-Weierstrass Theorem, Completeness of RN .
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Theorem 7.4 (Nested Intervals Theorem): By an interval in RN, we mean a set | of the
form | = {(Xl, X2, ..., XN)l a;<x1 < b1 , a2 <X2 < bz, oy AN SXN £ bN, ai, bi € R} .
Consider a sequence of nonempty closed intervals I such that
liobholzo...olko....
Then there is a point in RN contained in all the intervals. That is, 3X° € (M |; and
i=1
therefore N 1; # ¢ ; the intersection is nonempty.

i=1
Proof: Follows from the completeness of the reals, the nested intervals property on R.

Corollary (Bolzano-Weierstrass theorem for sequences): Let x',i=1,2,3,... bea
bounded sequence in RN . Then x' contains a convergent subsequence.

Proof 2 cases: x' assumes a finite number of values, x' assumes an infinite number of
values.

It follows from the Bolzano-Weierstrass Theorem for sequences and the definition of

compactness that an infinite sequence on a compact set has a convergent subsequence
whose limit is in the compact set.
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